

 190 Int. J. Critical Computer-Based Systems, Vol. 7, No. 2, 2017

 Copyright © 2017 Inderscience Enterprises Ltd.

Validation of the actual behaviour of a real-time
application

Moustapha Bikienga
University of Koudougou,
BP 376, Koudougou, Burkina-Faso, France
Email: bmoustaph@yahoo.fr

Annie Choquet-Geniet* and Dominique Geniet
University of Poitiers and ENSMA,
BP 40109, 86961 Futuroscope Chasseneuil Cedex, France
Email: annie.geniet@univ-poitiers.fr
Email: dominique.geniet@univ-poitiers.fr
*Corresponding author

Abstract: Classically, the temporal validation of a hard real-time application is
performed using the WCET’s, for instance by means of simulation. But since
the actual behaviour of the application uses the ACET’s which may be shorter
than the WCET’s, the simulated and the effective behaviours may be different.
Verifying whether an application behaves in accordance to a given scheduling
strategy requires to precisely specify how the application is expected to behave
in the case of ACET’s shorter than the WCET’s. For that aim, we define two
notions of compliance. The non-flexible compliance imposes the strict respect
of the start times given by the simulated schedule, whereas the flexible one
tolerates a higher level of conservatism. We then discuss the advantages of
each, and show that using any of them preserves the validity of the behaviour
of the application.

Keywords: real-time applications; scheduling; actual behaviour; validation;
compliance; worst case execution time; WCET; actual execution time; ACET.

Reference to this paper should be made as follows: Bikienga, M.,
Choquet-Geniet, A., Geniet, D. (2017) ‘Validation of the actual behaviour of a
real-time application’, Int. J. Critical Computer-Based Systems, Vol. 7, No. 2,
pp.190–208.

Biographical notes: Moustapha Bikienga completed his PhD in 2013 at
ENSMA, in Poitiers, France, on real time scheduling issues. He worked under
the supervision of Annie Choquet-Geniet and Dominique Geniet. He is now
Assistant Professor at the University of Koudougou in Burkina-Faso, where he
teaches computing.

Annie Choquet-Geniet is a Full Professor since 2007 at the University of
Poitiers in France. She works in the Laboratory of Computer Science and
Automatic Control for Systems. Her research interests concern real-time
systems, real-time scheduling, real-time modelling and Petri nets.

Dominique Geniet is an Associate Professor since 2005 at the University of
Poitiers in France. He works in the Laboratory of Computer Science and
Automatic Control for Systems. His research interests concern real-time
systems, real-time modelling and quality assessment in real-time systems.

 Validation of the actual behaviour of a real-time application 191

1 Introduction

Widely used to control critical physical processes, the real-time applications are generally
designed as sets of tasks, where a task implements a given function, and is subject to
temporal constraints, due to the dynamic of the controlled process. The temporal
constraints express e.g., the required frequency of a control activity, the validity duration
of information, or the maximum delay between a given event and the resulting action. If
some tasks are processed behind or ahead of time, some severe malfunctions may occur,
thus a key point requirement for such applications is timeliness. An application can be
considered as reliable only if it can be proved that all the temporal constraints are met.
This in turn relies on the choice of an appropriate scheduling strategy, and on its
implementation within the target system. Two approaches can be considered: the online
method where a scheduling policy is implemented within the scheduler and the offline
method: a valid schedule is computed before run-time on the basis of the worst case
execution times (WCET). Then this schedule is stored, generally in a table, and the
dispatcher must follow it. For applications composed of independent tasks, there exist
efficient online algorithms. For instance, EDF (Liu and Layland, 1973) is an optimal
strategy for independent task sets, where a scheduling algorithm (or strategy) is said to be
optimal if either it produces a feasible (or valid) schedule, i.e., a schedule such that all
temporal constraints are met, or there exist no feasible schedules at all. But if we assume
that the tasks may be subject to precedence constraints and/or use critical resources,
which must be used in mutual exclusion, it has been proved that there exist no optimal
online strategies (Dertouzos and Mok, 1989; Hong and Leung, 1992). Furthermore, if
critical resources are used, the scheduling problem is NP-hard (Andersson and Jonsson,
2000; Leung and Whitehead, 1982). This motivates the choice of the offline
method. These approaches are more powerful than online strategies since they are
clairvoyant: the scheduling decisions are made according to the global knowledge of the
application while they are based on the instantaneous state of the application for online
strategies. Another benefit of offline methods is that additional qualitative criteria can be
considered during the computation of the schedule. There exist numerous offline
scheduling methods, based on linear programming (Graham et al., 1979; Martel, 1982),
branch-and-bound techniques (Xu and Parnas, 1990), or model-based approaches
(Grolleau and Choquet-Geniet, 2002; Geniet and Largeteau-Skapin, 2007; Chauviere and
Geniet, 2007; Choquet-Geniet and Largeteau-Skapin, 2014). Clairvoyant approaches like
EDL (Chetto and Chetto, 1989) also fall into offline strategies. Then the temporal
validation of the application either comes from conditions on the temporal parameters, or
is deduced from the simulation of the behaviour of the application. But whatever the way
it is done, the validation is performed offline before run-time. Now, generally, there
exists a gap between the simulated behaviour and the actual one. This gap comes from
the fact that the simulation is performed using the WCET’s (upper bounds of the
durations of the instances of the tasks), whereas the actual behaviour uses the actual
execution time (ACET) (actual durations). To fill this gap, an important property for the
scheduling algorithms is the property of predictability (Cucu-Grosjean and Goossens,
2010), which guarantees that the temporal constraints are still met, even if the ACET’s
are shorter than the WCET’s. This is the case for instance for the algorithm EDF. But for
non-independent task sets, if some duration is shorter than expected, some scheduling
anomalies may occur (Buttazzo, 1997). Thus an important issue is to precisely specify
how the application is expected to behave when some ACET’s are different from the

 192 M. Bikienga et al.

WCET’s. We thus have an expected theoretical behaviour, obtained by simulation using
the WCET, which has been temporally validated, and an effective behaviour. Both are
generally different. Our main objective is to answer the following question: ‘when is the
effective behaviour acceptable with regards to a given scheduling policy, and when does
it highlight some errors in the behaviour of the system?’. In the case of an offline
scheduling, the question is to determine what it means that the execution of the
application follows the pre-computed schedule. The aim of this paper is to answer these
questions, so that the behaviour of the application can be verified, according to a given
online or offline scheduling policy. Besides, answering these questions for offline
strategies will also provide some clues for their implementation.

By our best knowledge, this issue has not yet been considered. In fact, online
strategies are generally required to be predictable, what guarantees the validity of the
actual behaviour provided the simulated behaviour (based on the WCET’s) was valid.
But as far as we know, no results exist if the strategy cannot be proved predictable. And
the problem has not been considered for offline strategies.

To solve this issue, we can adopt two different points of view. Both impose to respect
the topology of the schedule, which means that task inversions are forbidden, which in
turn implies the respect of the precedence constraints and of the mutual exclusions. Then
in the first approach, we also impose the strict respect of the start times planned in the
theoretical schedule. This approach is thus suited for offline scheduling methods, but
does not fit with online scheduling, which is often conservative. In the second approach,
we mix the respect of the topology with a conservative behaviour: if the next planned
task is pending, it may start execution as soon as the previous task completes, whatever
the planned start time. This approach can fit as well with online as with offline strategies.
In both cases, the respect of the temporal constraints will be ensured, provided the
theoretical schedule was temporally correct. And it will also guarantee the predictability
of the behaviour. An approach closely related to ours can be found in Schranzhofer et al.
(2009). But the authors consider resources in general; they do not focus on CPU, as we
do. Besides, they stay at a modelling level, they do not explicitly consider effectiveness
in the sense that they do not consider ACET’s, they only deal with WCET’s. Our
approach can then be viewed as a continuation of theirs, where validity is considered
regarding the ACET’s.

The paper is organised as follows. In Section 2, we present our general context, and
introduce our assumptions and notations. In Section 3, we introduce the notion of
topology of a schedule, which expresses the succession of tasks and supports the
precedence relations and the critical section rules. Then in Section 4, we propose the
non-flexible compliance, first for non-pre-emptive schedules, then for pre-emptive ones.
Finally, in Section 4, we present the flexible compliance, again for non-pre-emptive and
then for pre-emptive schedules. In each case, we prove the preservation of the validity of
the schedule. The paper ends with some concluding remarks and perspectives.

 Validation of the actual behaviour of a real-time application 193

2 The context

2.1 Real-time applications

We consider a periodic real-time application, which is dedicated to the control
of a physical process. It consists of a set of functions which must run periodically:
F = {f1, f2,…,fn}. To express the requirements induced by the controlled process, a
temporal model is associated with the functional model.

A task τi is defined as a function fi, associated with a four-tuple < ri, Ci, Di, Ti >
(τi = (fi(ri, Ci, Di, Ti))) where ri is the first release time of the task, Ci its WCET, which is
an upper bound of the computation time of the function fi; Di its relative deadline, which
is the maximum acceptable delay between the release and the completion of any instance
of the task; and Ti its period.

The hyperperiod H of the application is defined as the least commun multiple (LCM)
of the periods: H = LCM(T1,…,Tn).

For any j ≥ 1, j
if denotes the jth instance of the function fi. The associated sub-task

j
iτ is characterised by , ,j j j

i i ir C d< > where (1)j
i iir r j T= + − × is its release time, j

iC
its ACET, which satisfies ,j

iiC C≤ and j j
ii id r D= + its absolute deadline. We denote

Instance(F) the set of the instances of the functions in F.
If we consider interacting tasks, the model of the application also contains the

precedence relations and the mutual exclusions. In a classical way, we assume that
precedence related tasks have the same period. Furthermore, we adopt the model
proposed by Xu and Parnas (1990), Cottet and Babau (1994) and Grolleau and
Choquet-Geniet (2002). The initial functions are decomposed into a set of sub-functions,
which are related by a precedence relation ≺: fi,j ≺ fk,l means that the execution of any
instance of the sub-function fi,j must precede the execution of the associated instance of
the sub-function fk,l; and by a mutual exclusion relation ◊: fi,j ◊ fk,l means that the
sub-functions fi,j and fk,l must be processed in mutual exclusion. These relations are
considered during the scheduling step.

In the rest of the paper, we assume that the decomposition of the functions has
already been done. Thus F is a set of the resulting (sub) functions, and the relations ≺
and ◊ are defined on F.

2.2 Real-time scheduling

We consider a monoprocessor system. We suppose that A is an application composed of
n tasks, associated with a set of functions F, ≺ is the precedence relation and ◊ the
mutual exclusion relation.

Scheduling the application consists in defining a function S: N → Instance(F) which

is interpreted in the following way: () q
pS t f= means that q

pf is processed during the
time interval [t, t + 1).

The associated schedule is defined as a sequence of three-tuples called blocks:
Sch = (start(i), end(i), *

()
()) ,i

iif ∈
β

α N where start(i) and end(i) belong to N, and verify

start(i) < end(i). Furthermore, α(i) ∈ {1,…,n} and β(i) ∈ N*. A block (start(i), end(i),

 194 M. Bikienga et al.

()
())i
if β

α represents the execution of the instance ()
()

i
if β

α during the time interval [start(i),
end(i)).

We denote d(i) the length of a block: d(i) = end(i) − start(i).
Let q

pf be an instance of a function. ()q
pBe f denotes the time by which the instance

starts execution, and ()q
pCp f the time by which it completes execution.

Finally, for any integers a and b (a < b), Sch(a, b) denotes the restriction of the
schedule Sch on the time interval [a, b).

Example. We consider an application composed of two tasks A1 =< f1(0, 2, 4, 4),
f2(0, 3, 6, 6) >. The schedule Sch1(0, H) = ((0, 1, 1

1),f (1, 2, 1
2),f (2, 3, 1

1),f (3, 4, 1
2),f

(4, 5, 2
1),f (5, 6, 1

2),f (6, 7, 2
2),f (7, 8, 2

1),f (8, 9, 2
2),f (10, 12, 3

1)),f is a valid
(pre-emptive) schedule (see Figure 1). And for instance, we have 1

1() 0,Be f =
1

1() 3,Cp f = 2
1() 4,Be f = 2

1() 8,Cp f = etc.

Figure 1 The schedule Sch1(0, H)

Next, we can formally characterise the temporal validity of a schedule. Let Sch be a
schedule: Sch = ((start(i), end(i), ()

()),i
if β

α i ∈ N*), computed using the WCET.

Property 1: the simulated schedule Sch is temporally valid if and only if the following
properties are met:

0

0 0

()
()

()
()

0
s.t. () , ()

(0) (), there exists at least one block associated with

(1) 1, ()

(2) 1, ()
(3) 1, (1) ()

(4) {1, , }, 1, ()

,

q q
p p

i
i

i
i

o i
i i i i j

f Instance f

i r start i

i d end i

i end i start i

i n j d i C

p q
= =

∀ ∈

∀ ≥ ≤

∀ ≥ ≥

∀ > − ≤

∀ ∈ ≥ =

∀

∑…

β
α

β
α

α β

F

() ()
() ()) () ())

{1, , },
(5) , ,

(6) , , , , 0

k k
p q p q

k k k k
p j p p p p

n
f f k Cp f Be f

f f k Be f Cp f Be f Cp f′ ′

∈

⇒ ∀ ≤

⎡ ⎡′◊ ∀ =⎣ ⎣

…

∩

≺

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

Note that if we consider a non-pre-emptive schedule, for each pair (i0, j0), there exists
only one integer i such that α(i) = i0 and β(i) = j0, i.e., there is only one block per
instance.

Point (0) guarantees that every instance of every task is actually scheduled.
Conditions (1) and (2) ensure the respect of the release dates and of the deadlines.
Condition (3) guarantees that two consecutive blocks do not overlap. (4) means that the
functions are always fully processed. (5) guarantees the respect of the precedence
constraints, and finally (6) ensures the respect of the mutual exclusions. In the sequel, for

 Validation of the actual behaviour of a real-time application 195

simplicity reasons, we will focus on synchronous task sets: we assume that the first
release times are all equal, and equal to 0. In such a case, the application behaves in a
cyclical way from time 0, and we just have to consider the schedule Sch(0, H). For
asynchronous tasks, the application also behaves in a cyclical way, but only from a given
time tc (Choquet-Geniet and Grolleau, 2004). We would thus have to consider the
schedule on the time interval [0, tc + H).

3 Topology of a schedule

Some properties only depend on the execution order of the different instances of the
different tasks. To easily express these properties, we introduce the topology of a
schedule which describes this execution order.

3.1 Notations

We first introduce some notions and notations which will be useful in the remainder of
the paper.

Let A be a finite alphabet, M = m1m2…mn a word written on the alphabet A, and a a
letter.

Ind(M, a) is the set of the indices of the occurrences of a in the word
M: Ind(M, a) = {i ∈ {1,…,n} s.t. mi = a}.

|M| denotes the length of M, and |M|a the number of occurrences of a in M, which is
also the cardinality of Ind(M, a).

If M and M′ are two words, then M′ is a sub-word of M, what is denoted by M′ � M,
if there exist u1, u2,…,up, v0,v1,…,vp in A* such that M′ = u1u2…up and M = v0u1v1u2
…upvp. Note that in this case, there exists a strictly increasing mapping function φ from
{1,…,|M′|} onto {1,…,|M|} such that for all i in {1,…,|M′|}, () .i im m′ = φ

3.2 The topological sequence

The topology of a schedule Sch(0, H) describes the succession of the sub-tasks. It is given

by a word written on the alphabet with 1 , 1 .q
p

p

HAlp f p n q
T

⎧ ⎫= ≤ ≤ ≤ ≤⎨ ⎬
⎩ ⎭

 It is obtained

by the projection of the schedule on its third component, and is called the
topological sequence. For instance, the topological sequence associated with

1 1 1 1 2 1 2 2 2 3
1 1 2 1 2 1 2 2 1 2 1(0,) .M H f f f f f f f f f f=
Thus, a schedule can be seen as a temporised topological sequence where the

temporisation guarantees the respect of the temporal constraints and the topology
guarantees the respect of the precedence constraints and of the mutual exclusions. These
constraints can be expressed using only the topological sequence. If Sch is a schedule and
M its associated topological sequence, the condition (5) of the property 1 can be

reformulated as: 1, , ,p q
p

Hf f k
T

⎧ ⎫⇒ ∀ ∈ ⎨ ⎬
⎩ ⎭

≺ … (,),k
pu Ind M f∀ ∈ (,),k

qv Ind M f∀ ∈

u < v: in the topological word, any occurrence of the letter k
pf appears prior to any

 196 M. Bikienga et al.

occurrence of the letter .k
qf And the exclusion mutual condition can be reformulated as:

fp ◊ fq if 1, , ,
p

Hk
T

⎧ ⎫∀ ∈ ⎨ ⎬
⎩ ⎭
… 1, , ,

p

Hk
T

⎧ ⎫′∀ ∈⎨ ⎬
⎩ ⎭
… [min((,)), max((,))]k k

p pInd M f Ind M f ∩

[min((,)), max((,))] 0k k
q qInd M f Ind M f′ ′ = : in the topological word, the critical sections

do not overlap. We thus have the next proposition:

Proposition 2: let Sch be a valid schedule, and let Sch′ be a schedule such that the
associated topological sequences verify M′ � M then the precedence constraints and the
mutual exclusion rules are met in Sch′ too.

Proof: assume that Sch′ does not meet the precedence constraints. Then there exists two

functions fp and fq such that fp � fq, but there exist 1, , ,
p

Hk
T

⎧ ⎫∈⎨ ⎬
⎩ ⎭
… (,)k

pu Ind M f′∈ and

(,)k
qv Ind M f′∈ such that v < u. Then, since φ is increasing, we would have φ(v) < φ(u)

with () (,)k
pu Ind M f′∈φ and () (,).k

qv Ind M f′∈φ But this in not possible since Sch
meets the precedence constraints. Thus Sch′ also meets the precedence constraints.

Assume now that Sch meets the mutual exclusion rules, but not Sch′. There exist two

functions fp and fq such that fp ◊ fq but there exist 1, , ,
p

Hk
T

⎧ ⎫∈ ⎨ ⎬
⎩ ⎭
… and 1, , ,

p

Hk
T

⎧ ⎫′∈ ⎨ ⎬
⎩ ⎭
…

such that [min((,)), max((,))] [min((,)),k k k
p p qInd M f Ind M f Ind M f ′′ ′ ′∩ max((,Ind M ′

))] 0k
qf ′ ≠ :

Let i be in [min((,)),k
pInd M f′ max((,))]k

pInd M f′ ∩ [min((,)),k
qInd M f ′′

max((,))].k
qInd M f ′′

We then have () [(min((,))),k
pi Ind M f′∈φ φ (max((,)))]k

pInd M f′φ ∩
[((min((,))),k

qInd M f ′′φ (max((,)))]k
qInd M f ′′φ since φ is increasing. We also have

min((,)) (min((,))) () (max((,))) max((,k k k
p p pInd M f Ind M f i Ind M f Ind M′ ′≤ ≤ ≤ ≤φ φ φ

)),k
pf and the same holds for k

qf ′ thus φ(i) ∈ [min((,)),k
pInd M f max((,))]k

pInd M f ∩
[min((,)),k

qInd M f ′ max((,))]k
qInd M f ′ which is empty by assumption. So the exclusion

mutual rules must also be respected by Sch′. □

3.3 The compliance problem

In the following, we consider a synchronous task set. We assume that a valid simulated
schedule has been computed (by any means) on the basis of the WCET’s. Thus the
topology of the simulated schedule respects the precedence relations, as well as the
mutual exclusion rules, and the schedule meets all the temporal constraints. We denote

1(((), (),))s
ss s i qSs start i end i f ∈= …

β
α this simulated schedule on the time interval [0, H),

and we denote Ms = ms1ms2…msq the associated topological sequence. We suppose
that an effective schedule has been obtained, running effectively the application.
To get this schedule, we can use an observer (Bikienga et al., 2012). Let

1(((), (),))e
ee e i rSe start i end i f ∈= …

β
α be this schedule on the time interval [0, H) and

 Validation of the actual behaviour of a real-time application 197

Me = me1me2…mer its topological sequence. The number of blocks of the schedule Ss
(resp. Se) is denoted q (resp. r). We assume that Ss verifies Property 1, and Se verifies the
point (4) of this property using the ACET’s instead of the WCET’s: the sum of the
durations of the blocks associated with a given instance equals the ACET of this instance.
We will say that the schedule respects the ACET’s. Our aim is to determine the required
properties for Se to match with Ss. We will then say that Se is compliant with Ss, or
implement Ss. We will consider two kinds of compliance: the non-flexible compliance
and the flexible one. And we will prove that each one guarantees the respect of all
constraints, i.e., guarantees that the effective schedule is still valid.

4 Non-flexible compliance

In a non-flexible approach, we consider that between starts(i) and ends(i), only ()
()
s

s

i
if β

α can
be processed. If an instance is shorter than planned, the system remains idle until the next
start time. The main benefit of this approach is that it requires no further verification to
guarantee the respect of the temporal parameters. It is also well suited to
non-conservative schedules, where the system must sometimes idle whereas some tasks
are ready to run. This can be the case for instance if EDL (Chetto and Chetto, 1989) is
used.

4.1 Non-pre-emptive schedules

We first consider non-pre-emptive schedules. For such schedules, only the precedence
constraints have to be considered, the problem of the mutual exclusion no longer exists
since the executions of two different tasks cannot interlace. Formally, we say that the
effective schedule Se is compliant with the non-pre-emptive simulated schedule Ss in a
non-flexible way (Se ≈ Ss) if the Rule 3 is met:

Rule 3:
(1)

 if
(2) 1 , () ()e s

Me Ms
Se Ss

i r start i start i
=⎧

≈ ⎨ ∀ ∈ =⎩ …

Condition (1) means that the topology is preserved. Condition (2) means that each block
starts exactly at the planned start time. Then both conditions guarantee that each instance
is processed within a time interval which meets the temporal constraints, as stated by the
following proposition.

Proposition 4: if Ss is a valid non-pre-emptive schedule, computed using the WCET’s,
and if an effective schedule Se which respects the ACET’s verifies Rule 3, then the
schedule Se is valid.

Proof: to prove the validity, we must prove that Se meets each condition of Property 1.
Condition (4) is met by assumption, so we focus on the other ones. Condition (0) comes
from the equality Ms = Me. The start times are preserved in Se, because of condition (2)
of the rule. Then, the lengths of the different blocks are equal to the actual durations of
the different instances by assumption. Thus the end times can only have been put forward
since j

iiC C≤ for all i and j. Thus conditions (1), (2) and (3) of the Property 1 are still

 198 M. Bikienga et al.

met. And since the topological sequences of the simulated and the effective schedules are
equal, the precedence relations are preserved according to Proposition 2. □

Example. We consider the application A1. Figure 2 gives a valid non-pre-emptive
simulated schedule, Ss1 = ((0, 2, 1

1),f (2, 5, 1
2),f (5, 7, 2

1),f (7, 10, 2
2),f (10, 12, 3

1))f
and an effective schedule which implements it in the case where 3

1 1C = and
1 2
2 2 2,C C= = the other ACET’s are equal to the WCET’s: Se1 = ((0, 2, 1

1),f (2, 4, 1
2),f

(5, 7, 2
1),f (7, 9, 2

2),f (10, 11, 3
1)).f We have 1 2 1 2 3

1 1 1 2 2 2 1 .Ms Me f f f f f= = And e.g., at
time 4, the instance 2

1f is ready, but it nevertheless waits until time 5 to start execution.

Figure 2 (a) A non-pre-emptive simulated schedule for the application A1 (b) The non-flexible
implementation of the schedule when 3

1 1C = and 1 2
2 2 2C C= =

4.2 Pre-emptive schedules

We now consider pre-emptive schedules which mean that some instances may appear in
several blocks (see Figure 1). If an instance has an ACET shorter than its WCET, it can
result in the deletion of some blocks, which must be the last ones of the instance, and the
end of the last remaining block can be put ahead, as illustrated by Figure 3. Indeed, an
instance cannot be suspended within a block and resume in a further one. It is processed
in a conservative way within the blocks. This is required, because the ACET’s are not a
priori known. So the reduction of the duration of an instance cannot be anticipated.

Figure 3 (a) A simulated schedule for the task 1
1(, (0, 7, 11, 11))f (b) The non-flexible

implementation of the schedule when 1
1 4C = (c) An effective schedule which is not an

implementation of the simulated schedule

(a)

(b)

(c)

 Validation of the actual behaviour of a real-time application 199

In the example of Figure 3, we have a task τ1 = (f1(0, 7, 11, 11)). The simulated execution
of the first instance of the task is given by the schedule (a), composed of five blocks. Let
us assume that the ACET equals 4. The schedule (b) implements the schedule (b) in a
non-flexible way: the last two blocks have been deleted, and the third one has been
shortened; but the schedule (c) where the blocks 1 and 5, and the first half of the block 3
have been deleted, is not an implementation of the schedule (a).

From this example, we can see that an effective schedule can have less blocks than
the simulated one (r ≤ q).

Figure 4 A simulated schedule for the application A1 and the non-flexible implementation when
1 2
1 1 1,C C= = 1 2

2 2 2C C= = – construction of the function

First, we relate the blocks of the effective schedule to the corresponding blocks of the
simulated schedule. We thus define the function γ (see Figure 4):

{ }
{ }

1(1) inf
() inf (1) , 1

i

p i

γ i me ms
γ p i γ p me ms p
⎧ = =⎪
⎨ = > − = >⎪⎩

Thus we have Me = me1me2…mer = msγ(1)msγ(2)…msγ(r). Figure 4 illustrates the
construction of the function γ. Here, the blocks 3 and 6 of the simulated schedule have
been deleted.

We say that the effective schedule Se is a non-flexible implementation of the
pre-emptive simulated schedule Ss(Se ≈ Ss) if:

()

()
()

1

1

Rule 5:
(1) 1 , | | 0
(2)
(3) s.t. , () (1)

 if 0

(4) 1 , () ()
 0

(5) 1 , () ()

i

j

γ j

ms

p r ms

e s

j r ms

e s

i q Me
Me Ms

j p γ p j γ p
Se Ss me me

j r d j d γ j
me me

j r start j start γ j

+

+

∀ ∈ >⎧
⎪
⎪
⎪ ∀ ∃ < < +
⎪
⎪≈ =
⎨
⎪ ∀ ∈ <⎪
⎪ ⇒ =
⎪
⎪ ∀ ∈ =⎩

…

…

…
…

…

�

Condition (1) guarantees that no instance has been skipped. Condition (2) guarantees that
the effective topology is compliant with the simulated topology (there is no instance
inversion for example). Condition (3) guarantees that the deleted blocks of an instance

 200 M. Bikienga et al.

are the last blocks of this instance: the deletion of a block number j means that the
associated instance completed earlier, and thus this instance does not appear again later in
the effective schedule. Condition (4) guarantees that if an effective block is shorter than
the associated simulated block, then it is the last effective block of the associated
instance. And finally, condition (5) expresses the non-flexibility: the start dates are
strictly respected.

Consider again the schedule (C) of Figure 3. We have γ(1) = 2, γ(2) = 3, and γ(3) = 5.
But condition (3) is not met: for j = 4, we have γ(2) < j < γ(3) but 14 1

1
3 1| | | | 1.ms fme f= =

Condition (4) neither holds: 1 = de(2) < ds(γ(2)) = 2, but
(2)

3 1.
γmsme = And finally,

condition (5) is not verified since starte(2) = 6 ≠ starts(γ(2)) = 5. Thus the schedule (C)
was not compliant with the simulated schedule.

We then have the following validity proposition:

Proposition 6: if Ss is a valid pre-emptive schedule, computed using the WCET’s, and if
an effective schedule Se which respects the ACET’s verifies Rule 5, then the schedule Se
is valid.

Proof: again, we must prove that the conditions 0, 1, 2, 3, 5 and 6 of Property 1 are still
verified. First, point (0) is verified because Ms verifies it (i.e., each instance appears in
Ms), and because of the point (1) of Rule 5 each letter which appears in Ms also appears
in Me). Then, the start times are respected because of the point (5) of the rule, and the end
times can only be put ahead because of the conservatism of the execution within the
blocks. So the conditions (1), (2) and (3) of Property 1 are still satisfied. Then the
points (5) and (6) are verified according to proposition 2. □

5 Flexible compliance

In a flexible policy, if an instance completes earlier than planned, and if the instance
scheduled in the next block is pending, it can start execution without waiting for the date
specified in the simulated schedule. Thus the simulated start date gives the latest moment
by which the instance must start execution. We can note that the online strategies are
flexible strategies. In the case of a mixed scheduling (with periodic and aperiodic tasks),
one benefit of such an implementation is that the idle slots can be postponed if they are
not yet used for an aperiodic task. This can improve the integration of the aperiodic tasks.

5.1 Non-pre-emptive schedules

Let us again consider the application A1 and the simulated schedule of Figure 2. A
flexible implementation of the schedule, if 3

1 1C = and 1 2
2 2 2,C C= = and the other

ACET’s equal the WCET’s is Se2 = ((0, 2, 1
1),f (2, 4, 1

2),f (4, 6, 2
1),f (6, 8, 2

2),f (8, 9,
3

1))f (see Figure 5). In this schedule, the three idle slots are at the end of the schedule,
whereas they are separated in the non-flexible implementation. Thus if an aperiodic task
of duration 3 is executed during the idle slots, is would be pre-empted twice in the
non-flexible system, but it would not be pre-empted in the flexible one. The overhead
will thus be smaller.

 Validation of the actual behaviour of a real-time application 201

Figure 5 A flexible implementation of the schedule of Figure 2(a) when 3
1 1C = and

1 2
2 2 2C C= =

Formally, we say that the effective schedule Se is a flexible implementation of the
non-pre-emptive simulated schedule Ss (Se ~ St) if:

()()
()

Rule 7:
(1)
(2) (1) (1)

~ if (3) {2, , },

(1), () ()e
e

e s

i
e e si

Me Ms
start start

Se St i r

Max end i r start i start i

=⎧
⎪ =⎪
⎨ ∀ ∈
⎪
⎪ − ≤ ≤⎩

…
β

α

Here again, (1) assures the respect of the topology of the schedule and (2) and (3) assure
that all the temporal parameters are met. We can notice that in such an implementation,
the release dates will have to be explicitly considered at run time, what is not the case for
the non-flexible implementation. The preservation of the validity is given by
Proposition 8.

Proposition 8: if Ss is a valid non-pre-emptive schedule, computed using the WCET’s,
and if an effective schedule Se which respects the ACET’s verifies Rule 7, then the
schedule Se is valid.

Proof: the point (0) of Property 1 again comes from the point (1) of the rule. The
conditions (1) and (3) directly result from the points (2) and (3) of the rule. The point (2)
of the property comes from the points (2) and (3) of the rule, and from the fact that

j
iiC C≤ for any i and j, thus again the end of an effective block can only have been put

forward as to the end of the associated simulated block. And the point (5) comes from the
preservation of the topological sequence, according to Proposition 2. □

5.2 Pre-emptive schedules

We now consider pre-emptive schedules. We again impose the respect of the topology of
the schedule, thus the conditions (1) and (2) of rule 3 must hold. The main difficulty here
comes from the following situation: if a task completes earlier than planned, the next
block may also start earlier, and some blocks may be deleted (as in the non-flexible case).
But this may cause the merge of some blocks, as illustrated in Figure 6. The second block
of the instance 1

2f does not exist in the effective schedule, and thus, the second block of
the task τ1 has been brought forward, and merged with the first block.

Figure 6 The simulated schedule for the task set (f1, (0, 2, 6, 6), (f2, (0, 3, 6, 6)) and its flexible
implementation when 1

1 1C = and 1
2 3C =

 202 M. Bikienga et al.

Let us consider a given block of the simulated schedule (starts(i), ends(i), ()
()).s

s

i
if β

α The
block appears (in its exact form) in the effective schedule if there exists j such that
i = γ(j), starts(i) = starte(j) and ends(i) = ende(j). Else, at least one of the four following
properties is verified:

1 The block does not exist: it has been deleted because the instance is shorter than
planned: ∀j ∈ {1,…,r}, γ(j) ≠ i.

2 The block exists but starts earlier than planned because some previous instances
completed earlier than planned: starte(j) < starts(i), with i = γ(j).

3 The block exists, but is shorter than planned because the instance is shorter:
de(j) < ds(i) with i = γ(j). In this case, the block must be the last one associated with
the considered instance in the effective schedule, because of the conservatism within
the blocks.

4 The block exists, but is longer than planned: de(j) > ds(i) with i = γ(j). This comes
from the merge of some blocks.

To capture these situations, we first introduce some notations, and a compliance operator.
If S is a schedule composed of k blocks (S = B1B2…Bk), over the time interval [0, H),

then, S[k1: k2] (with 1 ≤ k1 ≤ k2 ≤ k) denotes the schedule reduced to the blocks numbered
from k1 to k2: S[k1: k2] = Bk1…Bk2. Its associated topological sequence is then M[k1: k2].

We again assume that the conditions (1) and (2) of Rule 5 are verified for the
schedules Se and Ss. Let us consider the two truncated schedules Ss[k1: q] and 1[:],Se k r′

and a time t which is the first time by which the processor is available to process 1
1

()
() .e

e

k
kf ′

′
β

α

Initially, we set 1 1 1k k ′= = and t = 0. Then we say that 1[:]Se k r′ implements Ss[k1: q]
from the time t 1 1([:] ~ [:])tSe k r Ss k q′ if we are in one of the following situations:

1 1[:] ~ [:] iftSe k r Ss k q′

• either
1 1[:]Se k q′ is an empty schedule. The remaining blocks in Ss (if any) correspond

to already completed instances, since no instance is skipped (condition (1) of the
Rule 5).

• or

2
1 1

1

1 1

1

1 1

(1) (thus ())
(2) | [:] | 0
(3) [:] ~ [1:]

k

k k

m

t

ms me γ k k
Me k r

Se k r Ss k q

′ ′≠ ≠⎧
⎪ ′ =⎨
⎪ ′ +⎩

The block number k1 of the simulated schedule has been deleted. Thus the
corresponding instance cannot be scheduled later (2). And the effective schedule
implements the remainder of the simulated schedule, from the time t (3).

• or

3
1 1

1
1

1 1
()

1 1()

(1) (thus ())

(2) (,) () ()s
s

k k

k
e sk

ms me γ k k

Max t r start k start k
′ ′= =⎧⎪

⎨ ′≤ ≤⎪⎩
β

α

 Validation of the actual behaviour of a real-time application 203

The first block of the effective schedule implements the first block of the simulated
schedule, and it starts not later than specified in the simulated schedule (but possibly
earlier). In this case, we next must compare the durations of the effective and of the
simulated blocks 1(())ed k ′ and ds(k1)). Three cases are possible:

a If they are equal 1 1(() ()),e sd k d k′ = we have a last condition which is

[] []1 1

Rule 9:
1: ~ 1:sendSe k r Ss k q′ + +

The first blocks correspond to each other. We move to the end of the first effective
block, and the rest of the effective schedule must implement the rest of the simulated
schedule from that time. Furthermore, we have 1 1 1() () ()e e eend k start k d k′ ′ ′= +

1
1

()
1 1 1 ()() () () .s

s

k
s s s kstart k d k end k d≤ + = ≤ β

α

b If the effective block is shorter than the simulated one 1 1(() ()),e sd k d k′ < then the
instance of the block completes earlier than planned, and cannot thus appear later in
the schedule (condition (1) of rule 10). Then as in case a, the remainder of the
effective schedule must implement the remainder of the simulated schedule, from a
time equal to the end of the first effective block (condition (2) of Rule 10). Thus the
next conditions must be verified:

[]
[] () []

1

1

1

1 1

Rule 10:

(1) 1: 0

(2) 1: ~ 1:
k

e

m

end k

Me k r

Se k r Ss k q′

⎧ ′ + =⎪
⎨

′ + +⎪⎩

And we also have 1
1

()
1 1 ()() () .s

s

k
e s kend k end k d′ ≤ ≤ β

α

c If the effective block is longer than the simulated one 1 1(() ()),e sd k d k′ > which results
from the merge of some blocks, after the deletion of some other ones, we must first
determine which blocks have been deleted, and verify that the associated instances
do not appear in the remainder of the schedule. Then we must identify the blocks that
have been merged. If the last one has been shortened, then the associated instance
cannot appear later. So we get the Rule 11. The blocks numbered p0, p1,…,ps are
those which are merged. (1.χ) means that these blocks are associated with the right
instance 1

1
()

()().s
s

k
kf β

α (1.δ) means that the intermediate blocks have effectively been

deleted. (1.∈) and (1.η) express the fact that exactly these blocks have been merged.
(2) means that if the last merged block has been shortened, the associated instance is
completed, and cannot thus appear again in the remainder of the effective schedule.
And finally, (3) expresses that the remainder of the effective schedule must
implement the simulated schedule starting at the block after the last merged block,
and again from the end of the first effective block.

 204 M. Bikienga et al.

() ()() () ()()
[]

() ()

() ()

0 1 1

1 1

1 1

1

1
0

1
0

Rule 11:
(1) There exist , , , (1)
 s.t.: () {1, , }, , ,

 () 1 1, s.t. , : 0

 ()

 ()

(2)

j

s

s i s i s s

i i m

s

s i e
i

s

s i e
i

p k p p s
χ i s p p k k

δ i s j p j p Me k r

d p d k

η d p d k

+

−

=

=

= ≥

∀ ∈ =

′∀ ∈ − ∀ < < =

′∈ <

′≥

∑

∑

…
…

…

α β α β

() () []

[] () []
1

1

1 1
0

1

1: 0

(3) 1: ~ 1:

k

e

s

e i m
i

send k

d k ds p Me k r

Se k r Ss p q
=

′

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪ ′ ′< ⇒ + =
⎪
⎪

+ +⎪⎩

∑

And we have 1 1
1 1

() ()
1 () () () () () .s s

s s

k k
e s i s k kend k end p Cp f d′ ≤ ≤ ≤β β

α α
Then we define the global operator. The effective schedule Se is a flexible

implementation of the pre-emptive schedule Ss (Se ~ Se) if:

0

Rule 12: ~ if
(1) 1 0

 ~ if (2)
(3) ~

ims

Se Se
i q Me

Se Se Me Ms
Se Ss

⎧ ∀ ∈ >
⎪
⎨
⎪
⎩

…
�

And we have the following validity proposition:

Proposition 13: if Ss is a valid pre-emptive schedule, computed using the WCET’s, and if
an effective schedule Se which respects the ACET’s verifies Rule 12, then the schedule
Se is valid.

Proof: the condition (0) of property 1 results from the point (1) of Rule 12. It follows
from the point (3.2) that an effective block never starts before the release time of the
associated instance, so the point (1) is verified. Then, we have stated that in every case,
we have 1

1
()

1 () () s
s

k
e kend k d′ ≤ β

α thus the point (2) is verified too. The operator ~t guarantees
that a block starts only after the end of the previous one [Rules 9, 10-(2) and 11-(3)], so
the condition (3) of the validity property is verified. And finally, the points (5) and (6) are
verified according to Proposition 2. □

5.3 Illustrative example

As an illustration, we consider the task set A2 =< f1(0, 4, 8, 8), f2(0, 6, 12, 12) >, and the
simulated and effective schedules given in Figure 7. Ss = ((0, 2, 1

1),f (2, 4, 1
2),f (4, 6,

1
1),f (6, 8, 1

2),f (8, 10, 2
1),f (10, 12, 1

2),f (12, 14, 2
2),f (14, 16, 2

1),f (16, 20, 2
2),f

(20, 24, 3
1)).f

 Validation of the actual behaviour of a real-time application 205

() () () ()
() () ()

1 1 1 1
1 2 1 2

2 2 3
1 2 1

0, 2, , 2, 4, , 4, 5, , 5, 7, ,

8, 10, , 12, 17, , 17, 21,

f f f f
Se

f f f

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

Figure 7 (a) The simulated schedule for the task set A2 (b) The flexible implementation of the
schedule when 1

1 3,C = 2
1 2,C = 3

1 4,C = 1
2 4C = and 2

2 5C =

(a)

(b)

We thus have: 1 1 1 1 2 1 2 2 2 3
1 2 1 2 1 2 2 1 2 1Ms f f f f f f f f f f= and 1 1 1 1 2 2 3

1 2 1 2 1 2 1 .Me f f f f f f f= Thus we
have q = 10 and r = 7.

The function γ is given by: γ(1) = 1, γ(2) = 2, γ(3) = 3, γ(4) = 4, γ(5) = 5, γ(6) = 7,
γ(7) = 10.

To prove that Se is a flexible implementation of Ss, we must prove that the three
points of Rule 12 are verified.

The point (1) is verified since the five letters 1 2 3 2
1 1 1 2, , ,f f f f and 2

2f appear in the
effective topological sequence. So no instance is skipped.

Then we have Me � Ms, so the point (2) is verified. Finally, we must verify that the
condition (3) is met, i.e., that:

Step 1 Se[1: 7] ~0 Ss[1: 10]. We are in the case (3.a). We have 1
1(0,)Max r = 0 =

starte(1) = starts(1) thus the point (3.2) is verified. Thus we apply Rule 9, i.e.,
we must verify that.

Step 2 Se[2: 7] ~2 Ss[2: 10]. We are again in the case (3.a). We have 1
2(2,)Max r = 2 =

starte(2) = starts(2) thus the point (3.2) is verified. Then we again apply Rule 9,
i.e., we verify that.

Step 3 Se[3: 7] ~4 Ss[3: 10]. We are in the case (3.b) (de(3) = 1 < ds(3) = 2). We have
1

1(4,)Max r = 4 = starte(3) = starts(3) thus the point (3.2) is verified. Then we
apply Rule 10.

We have | 13 1
1 2 2 3
2 1 2 1| [4 : 7] | | | 0m fMe f f f f= = [the condition (1) is verified]. To

prove the point (2) of Rule 10, we must then verify that.

Step 4 Se[4: 7] ~5 Ss[4: 10]. We are in the case (3.a). We have 1
2(5,)Max r = 5 =

starte(4) ≤ starts(4) = 6 thus the point (3.2) is verified. Then from Rule 9, we
must verify that.

Step 5 Se[5: 7] ~7 Ss[5: 10]. We are in the case (3.a). We have 2
1(7,)Max r = 8 =

starte(5) = starts(5) thus the point (3.2) is verified. Thus we apply Rule 9, and
verify that.

 206 M. Bikienga et al.

Step 6 Se[6: 7] ~10 Ss[6: 10]. We are in the case (2).

We have 16 2
2 3

2 1| [6 : 7] | | | 0,m fMe f f= = so condition (2) is met. To prove
condition (3), we must verify that.

Step 7 Se[6: 7] ~10 Ss[7: 10]. We are in the case (3.c). We have 2
2(10,)Max r = 12 =

starte(6) = starts(7) thus the point (3.2) is verified. We then apply Rule 11. We
have p0 = 7, p1 = 9 and s = 1: de(6) = 5 > ds(7), and de(6) < ds(7) + ds(9) = 6.

For j = 8: p0 < j < p1, and 2
1

2 3
2 1| [6 : 7] | | | 0,jm fMe f f= = so the point (1) is

verified.

Next, we have de(6) < ds(7) + ds(9) and 27 2
3

1| [7 : 7] | | | 0,m fMe f= = so the
point (2) is verified. Finally, to prove the point (3), we must verify that.

Step 8 Se[7: 7] ~17 Ss[10: 10]. We are in the case (3.a). We have 3
1(17,)Max r = 17 =

starte(7) < starts(10) = 20 thus the point (3.2) is verified. Finally we apply
Rule 9, so we must verify that.

Step 9 Se[8: 7] ~21 Ss[11: 10]. We are in the case (1), thus the condition is met.

So the condition (3) of Rule 12 is satisfied.
We can thus conclude that Se is a flexible implementation of Ss.

6 Conclusions and perspectives

The temporal validation of a real-time application has been widely explored in the
literature. It is performed before run-time, on the basis of the WCET’s. A simulated
schedule is thus computed. We considered the actual behaviour of an application, at
run-time. To get this behaviour, an observator (Bikienga et al., 2012) can be used. We
proposed to fill the gap between the simulated and the actual behaviours, to verify
whether the application behaves correctly according to the scheduling strategy, which is
given by means of the simulated schedule. For that aim, we focused on the question
‘what properties must an effective schedule meet to be an implementation of a given
pre-computed schedule?’ Besides, since the ACET’s may be shorter than the WCET’s,
the only knowledge of the simulated schedule is not sufficient to determine how to
implement the schedule. We have to precise the compliance policy, which specifies how
the application must behave in the case of ACET’s shorter than the WCET’s. Two
policies have been presented: the non-flexible policy, where the start times are strictly
respected, and the flexible policy, where a task may start earlier if some previous tasks
completed earlier. In the first case, no further verification must be made to guarantee the
respect of the temporal constraints. In the second case, the respect of the release dates
must be explicitly implemented. But in the second case, if they are not required to
process some non-periodic tasks, the idle slots may be postponed, to be used later. This
provides a higher flexibility to mixed applications (with periodic and aperiodic tasks).

 Validation of the actual behaviour of a real-time application 207

An important issue when defining the compliance policy is to guarantee that an
effective schedule compliant with a valid simulated schedule will still be valid. We have
proved that our policies preserve the validity. Thus no scheduling anomalies or temporal
failures will occur in the case of shorter ACET’s.

If we consider an offline strategy: a valid schedule has been computed, and must be
implemented to control the behaviour of the application. We then must chose if we want
a flexible or a non-flexible implementation. This will give the basis of the definition of
implementation tools, i.e., of code generators which will produce the code of an
application whose execution will obey the pre computed schedule according to the
chosen policy. The definition of such generators will be our next concern.

References
Andersson, B. and Jonsson, J. (2000) ‘Fixed-priority preemptive multiprocessor scheduling: to

partition or not to partition’, Proceedings of the Conference on Real-Time Computing Systems
and Applications, December, pp.337–346.

Bikienga, M., Geniet, D. and Choquet-Geniet, A. (2012) ‘Observation tools for effective schedules
in a rtos’, SIGBED Rev., June, Vol. 9, No. 2, pp.17–22.

Buttazzo, G.C. (1997) Hard Real-Time Computing Systems, Kluwer Academic Publishers, Boston.
Chauviere, B. and Geniet, D. (2007) ‘Une approche markovienne pour l’etude de syst`emes temps-

r´eel `a contraintes strictes’, Techniques et Sciences Informatiques, October, Vol. 26, No. 10,
pp.1269–1303.

Chetto, H. and Chetto, M. (1989) ‘Some results of the earliest deadline scheduling algorithm’,
IEEE Transactions on Software Engineering, Vol. 15, No. 10, pp.1261–1269.

Choquet-Geniet, A. and Grolleau, E. (2004) ‘Minimal schedulability interval for real time
systems of periodic tasks with offsets’, Theoretical of Computer Science, Vol. 310, Nos. 1–3,
pp.117–134.

Choquet-Geniet, A. and Largeteau-Skapin, G. (2014) ‘Size analysis in multiprocessor real-time
scheduling’, Int. J. Critical Computer-Based Systems, Vol. 5, Nos. 3/4, pp.197–217.

Cottet, F. and Babau, J.P. (1994) ‘Off-line temporal analysis of hard real-time applications’, 2nd
IEEE Workshop on Real-Time Applications.

Cucu-Grosjean, L. and Goossens, J. (2010) ‘Predictability of fixed-job priority schedulers on
heterogeneous multiprocessor real-time systems’, Information Processing Letters, Vol. 110,
No. 10, pp.399–402.

Dertouzos, M.L. and Mok, A.K.L. (1989) ‘Multiprocessor scheduling in hard real-time
environment’, IEEE Transactions on Software Engineering, Vol. 15, No. 12, pp.1497–1506.

Geniet, D. and Largeteau-Skapin, G. (2007) ‘WCET free time analysis of hard real-time systems on
multi-processors: a regular language-based model’, Thoretical Computer Science, Vol. 388,
Vol. 388, Nos. 1–3, pp.26–52.

Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy, A.H.G. (1979) ‘Optimization and
approximation in deterministic sequencing and scheduling: a survey’, Annals of Discrete
Mathematics, Vol. 5, pp.287–326.

Grolleau, E. and Choquet-Geniet, A. (2002) ‘Off line computation of real time schedules by means
of petri nets’, Journal of Discrete Event Dynamic Systems, Vol. 12, pp.311–333.

Hong, K.S. and Leung, J.Y. (1992) ‘On-line scheduling of real-time tasks’, IEEE Transactions on
Computers, Vol. 41, No. 10, pp.1326–1331.

Leung, J. and Whitehead, J. (1982) ‘On the complexity of fixed-priority scheduling of periodic
real-time tasks’, Performance Evaluation, Vol. 2, No. 4, pp.237–250.

 208 M. Bikienga et al.

Liu, C.L. and Layland, J.W. (1973) ‘Scheduling algorithms for multiprogramming in a hard
real-time environment’, Journal of the ACM, Vol. 20, No. 1, pp.46–61.

Martel, C. (1982) ‘Preemptive scheduling with release times, deadlines, and due times’, Journal of
the ACM, Vol. 29, No. 3, pp.812–829.

Schranzhofer, A., Chen, J.J. and Thiele, L. (2009) ‘Timing predictability on multi-processor
systems with shared resources’, Workshop on Reconciliating Predictability and Efficiency at
EMSOFT, October.

Xu, J. and Parnas, D.L. (1990) ‘Scheduling processes with release times, deadlines, precedence and
exclusion relations’, IEEE Transactions on Software Engineering, Vol. 16, No. 3, pp.360–369.

